Mixing Sinc kernels to improve interpolations in smoothed particle hydrodynamics without pairing instability

Author:

Cabezón Rubén M1ORCID,García-Senz Domingo23ORCID

Affiliation:

1. Center for Scientific Computing (sciCORE). Universität Basel , Klingelbergstrasse 61, CH-4056 Basel , Switzerland

2. Departament de Física, Universitat Politècnica de Catalunya , Avinguda Eduard Maristany 16, E-08019 Barcelona , Spain

3. Institut d’Estudis Espacials de Catalunya , Gran Capità 2-4, E-08034 Barcelona , Spain

Abstract

ABSTRACT The smoothed particle hydrodynamic technique is strongly based on the proper choice of interpolation functions. This statement is particularly relevant for the study of subsonic fluxes and turbulence, where inherent small errors in the averaging procedures introduce excessive damping on the smallest scales. To mitigate these errors, we can increase both the number of interpolating points and the order of the interpolating kernel function. However, this approach leads to a higher computational burden across all fluid regions. Ideally, the development of a single kernel function capable of effectively accommodating varying numbers of interpolating points in different fluid regions, providing good resolution and minimal errors would be highly desirable. In this work, we revisit and extend the main properties of a family of interpolators called Sinc kernels and compare them with the widely used family of Wendland kernels. We show that a linear combination of low- and high-order Sinc kernels generates good-quality interpolators, which are resistant to pairing instability while maintaining good sampling properties in a wide range of neighbour interpolating points, 60 ≤ nb ≤ 400. We show that a particular case of this linear mix of Sincs produces a well-balanced and robust kernel that improves previous results in the Gresho–Chan vortex experiment even when the number of neighbours is not large, while yielding a good convergence rate. Although such a mixing technique is ideally suited for Sinc kernels owing to their excellent flexibility, it can be easily applied to other interpolating families such as the B-splines and Wendland kernels.

Funder

MINECO

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3