Stellar mass, not dynamical mass nor gravitational potential, drives the mass–metallicity relationship

Author:

Baker William M12ORCID,Maiolino Roberto123

Affiliation:

1. Kavli Institute for Cosmology, University of Cambridge , Madingley Road, Cambridge CB3 OHA, UK

2. Cavendish Laboratory – Astrophysics Group, University of Cambridge , 19 JJ Thomson Avenue, Cambridge CB3 OHE, UK

3. Department of Physics and Astronomy, University College London , Gower Street, London WC1E 6BT, UK

Abstract

ABSTRACTThe widely known relation between stellar mass and gas metallicity [mass–metallicity relation (MZR)] in galaxies is often ascribed to the higher capability of more massive systems to retain metals against the action of galactic outflows. In this scenario the stellar mass would simply be an indirect proxy of the dynamical mass or of the gravitational potential. We test this scenario by using a sample of more than 1000 star-forming galaxies from the MaNGA (Mapping Nearby Galaxies at Apache Point Observatory) survey for which dynamical masses have been accurately determined. By using three different methods (average dispersion, partial correlation coefficients, and random forest), we unambiguously find that the gas metallicity depends primarily and fundamentally on the stellar mass. Once the dependence on stellar mass is taken into account, there is little or no dependence on either dynamical mass or gravitational potential (and, if anything, the metallicity dependence on the latter quantities is inverted). Our result indicates that the MZR is not caused by the retention of metals in more massive galaxies. The direct, fundamental dependence of metallicity on stellar mass suggests the much simpler scenario in which the MZR is just a consequence of the stellar mass being proportional to the integral of metals production in the galaxy.

Funder

Science and Technology Facilities Council

ERC

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3