The ominous fate of exomoons around hot Jupiters in the high-eccentricity migration scenario

Author:

Trani Alessandro A12ORCID,Hamers Adrian S3ORCID,Geller Aaron45,Spera Mario4ORCID

Affiliation:

1. Department of Earth Science and Astronomy, College of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan

2. Department of Astronomy, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan

3. Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Str. 1, D-85741 Garching, Germany

4. Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA) and Department of Physics and Astronomy, Northwestern University, 1800 Sherman Ave., Evanston, IL 60201, USA

5. Adler Planetarium, Department of Astronomy, 1300 S. Lake Shore Drive, Chicago, IL 60605, USA

Abstract

ABSTRACT All the giant planets in the Solar system host a large number of natural satellites. Moons in extrasolar systems are difficult to detect, but a Neptune-sized exomoon candidate has been recently found around a Jupiter-sized planet in the Kepler-1625b system. Due to their relative ease of detection, hot Jupiters (HJs), which reside in close orbits around their host stars with a period of a few days, may be very good candidates to search for exomoons. It is still unknown whether the HJ population can host (or may have hosted) exomoons. One suggested formation channel for HJs is high-eccentricity migration induced by a stellar binary companion combined with tidal dissipation. Here, we investigate under which circumstances an exomoon can prevent or allow high-eccentricity migration of a HJ, and in the latter case, if the exomoon can survive the migration process. We use both semi-analytic arguments, as well as direct N-body simulations including tidal interactions. Our results show that massive exomoons are efficient at preventing high-eccentricity migration. If an exomoon does instead allow for planetary migration, it is unlikely that the HJ formed can host exomoons since the moon will either spiral on to the planet or escape from it during the migration process. A few escaped exomoons can become stable planets after the Jupiter has migrated, or by tidally migrating themselves. The majority of the exomoons end up being ejected from the system or colliding with the primary star and the host planet. Such collisions might none the less leave observable features, such as a debris disc around the primary star or exorings around the close-in giant.

Funder

JSPS

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3