Predicting 21 cm-line map from Lyman-α emitter distribution with generative adversarial networks

Author:

Yoshiura Shintaro12ORCID,Shimabukuro Hayato3,Hasegawa Kenji4ORCID,Takahashi Keitaro56

Affiliation:

1. Mizusawa VLBI Observatory, National Astronomical Observatory Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588, Japan

2. The University of Melbourne, School of Physics, Parkville, VIC 3010, Australia

3. South-Western Institute for Astronomy Research (SWIFAR), Yunnan University (YNU), Kunming 650500, People’s Republic of China

4. Department of Physics and Astrophysics, Nagoya University Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan

5. Faculty of Science, Kumamoto University, 2-39-1 Kurokami, Kumamoto 860-8555, Japan

6. International Research Organization for Advanced Science and Technology, Kumamoto University, 2-39-1 Kurokami, Kumamoto 860-8555, Japan

Abstract

ABSTRACT The radio observation of 21 cm-line signal from the epoch of reionization (EoR) enables us to explore the evolution of galaxies and intergalactic medium in the early Universe. However, the detection and imaging of the 21 cm-line signal are tough due to the foreground and instrumental systematics. In order to overcome these obstacles, as a new approach, we propose to take a cross correlation between observed 21 cm-line data and 21 cm-line images generated from the distribution of the Lyman-α emitters (LAEs) through machine learning. In order to create 21 cm-line maps from LAE distribution, we apply conditional Generative Adversarial Network (cGAN) trained with the results of our numerical simulations. We find that the 21 cm-line brightness temperature maps and the neutral fraction maps can be reproduced with correlation function of 0.5 at large scales k < 0.1 Mpc−1. Furthermore, we study the detectability of the cross-correlation assuming the LAE deep survey of the Subaru Hyper Suprime Cam, the 21 cm observation of the MWA Phase II, and the presence of the foreground residuals. We show that the signal is detectable at k < 0.1 Mpc−1 with 1000 h of MWA observation even if the foreground residuals are 5 times larger than the 21 cm-line power spectrum. Our new approach of cross-correlation with image construction using the cGAN cannot only boost the detectability of EoR 21 cm-line signal but also allow us to estimate the 21 cm-line auto-power spectrum.

Funder

JSPS

NSFC

ISM

MEXT

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Can diffusion model conditionally generate astrophysical images?;Monthly Notices of the Royal Astronomical Society;2023-09-12

2. Machine learning for observational cosmology;Reports on Progress in Physics;2023-05-26

3. Exploring the cosmic dawn and epoch of reionization with the 21 cm line;Publications of the Astronomical Society of Japan;2022-06-25

4. Constraining the 21 cm brightness temperature of the IGM at z = 6.6 around LAEs with the murchison widefield array;Monthly Notices of the Royal Astronomical Society;2021-08-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3