Efficient method for estimating the time evolution of the proto-neutron star mass and radius from a supernova neutrino signal

Author:

Nagakura Hiroki1ORCID,Vartanyan David2ORCID

Affiliation:

1. Division of Science, National Astronomical Observatory of Japan , 2-21-1 Osawa, Mitaka, Tokyo 181-8588, Japan

2. Astronomy Department and Theoretical Astrophysics Center, University of California , Berkeley, CA 94720, USA

Abstract

ABSTRACT In this paper, we present a novel method to estimate the time evolution of the proto-neutron star (PNS) structure from the neutrino signal in a core-collapse supernova (CCSN). Employing recent results from multidimensional CCSN simulations, we delve into a relation between the total emitted neutrino energy (TONE) and PNS mass/radius, and we find that they are strongly correlated with each other. We fit the relation by simple polynomial functions connecting the TONE to the mass and radius of the PNS as a function of time. By combining another fitting function representing the correlation between the TONE and the cumulative number of events at each neutrino observatory, the PNS mass and radius can be retrieved from purely observed neutrino data. We demonstrate retrievals of PNS mass and radius from mock data of the neutrino signal, and we assess the capability of our proposed method. While underlining the limitations of the method, we also discuss the importance of the joint analysis with the gravitational wave signal. This would reduce uncertainties of parameter estimations in our method, and may narrow down the possible neutrino oscillation model. The proposed method is a very easy and inexpensive computation, which will be useful in real data analysis of the CCSN neutrino signal.

Funder

National Science Foundation

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3