Supernova remnants in the Local Group – I. A model for the radio luminosity function and visibility times of supernova remnants

Author:

Sarbadhicary Sumit K.1,Badenes Carles1,Chomiuk Laura2,Caprioli Damiano3,Huizenga Daniel2

Affiliation:

1. Department of Physics and Astronomy and Pittsburgh Particle Physics, Astrophysics and Cosmology Center (PITT PACC), University of Pittsburgh, 3941 O‘Hara St, Pittsburgh, PA 15260, USA

2. Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824, USA

3. Department of Astrophysical Sciences, Princeton University, Ivy Lane, Princeton, NJ 08540, USA

Abstract

Abstract Supernova remnants (SNRs) in Local Group galaxies offer unique insights into the origin of different types of supernovae (SNe). In order to take full advantage of these insights, one must understand the intrinsic and environmental diversity of SNRs in the context of their host galaxies. We introduce a semi-analytic model that reproduces the statistical properties of a radio continuum-selected SNR population, taking into account the detection limits of radio surveys, the range of SN kinetic energies, the measured interstellar medium (ISM) and stellar mass distribution in the host galaxy from multi-wavelength images and the current understanding of electron acceleration and magnetic field amplification in SNR shocks from first-principle kinetic simulations. Applying our model to the SNR population in M33, we reproduce the SNR radio luminosity function with a median SN rate of ∼3.1 × 10−3 per year and an electron acceleration efficiency, εe ∼ 4.2 × 10−3. We predict that the radio visibility times of ∼70 per cent of M33 SNRs will be determined by their Sedov–Taylor lifetimes, and correlated with the measured ISM column density, NH ($t_{\rm {vis}} \propto N_{\rm H}^{-a}$, with a ∼ 0.33) while the remaining will have visibility times determined by the detection limit of the radio survey. These observational constraints on the visibility time of SNRs will allow us to use SNR catalogues as ‘SN surveys’ to calculate SN rates and delay-time distributions in the Local Group.

Funder

NSF AST

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 46 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3