Effects of onset of phase transition on binary neutron star mergers

Author:

Haque Shamim1ORCID,Mallick Ritam1ORCID,Thakur Shashikesh K1

Affiliation:

1. Department of Physics, Indian Institute of Science Education and Research Bhopal , 462066 Bhopal , India

Abstract

ABSTRACT Quantum Chromodynamics predicts phase transition from hadronic matter to quark matter at high density, which is highly probable in astrophysical systems like binary neutron star mergers. To explore the critical density where such phase transition can occur, we performed numerical relativity simulations of binary neutron star mergers with various masses (equal and unequal binaries). We aim to understand the effect of the onset of phase transition on the merger dynamics and gravitational wave spectra. We generated a set of equations of states by agnostically changing the onset of phase transition, having the hadronic matter part and quark matter part fixed. This particular arrangement of the equation of states explores the scenario of mergers where mixed phases of matter are achieved before or during the merger. Under these circumstances, if the matter properties with hadronic and quark degrees differ significantly, it is reflected in the stability of the final merger product for the intermediate mass binary. We performed a case study on mixed species merger, where one of the binary companions is hybrid star. If quark matter appears at low densities, we observe significant change in post-merger gravitational wave analysis in terms of higher peak frequencies and post-merger frequencies in power spectral density. We report indications expressed as spikes in phase difference plots at merger time for mixed mergers. We found that the expression of phase transition in post-merger gravitational wave signals is more significant for unequal mass binary than for equal mass binary having the same total baryonic mass.

Funder

Science and Engineering Research Board

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3