Extended planetary chaotic zones

Author:

Shevchenko Ivan I12

Affiliation:

1. Saint Petersburg State University, 7/9 Universitetskaya nab. , 199034 Saint Petersburg, Russia

2. Institute of Applied Astronomy, Russian Academy of Sciences , 191187 Saint Petersburg, Russia

Abstract

ABSTRACT We consider the chaotic motion of low-mass bodies in two-body high-order mean-motion resonances with planets in model planetary systems, and analytically estimate the Lyapunov and diffusion time-scales of the motion in multiplets of interacting subresonances corresponding to the mean-motion resonances. We show that the densely distributed (though not overlapping) high-order mean-motion resonances, when certain conditions on the planetary system parameters are satisfied, may produce extended planetary chaotic zones – ‘zones of weak chaotization,’ – much broader than the well-known planetary connected chaotic zone, the Wisdom gap. This extended planetary chaotic zone covers the orbital range between the 2/1 and 1/1 resonances with the planet. On the other hand, the orbital space inner (closer to the host star) with respect to the 2/1 resonance location is essentially long-term stable. This difference arises because the adiabaticity parameter of subresonance multiplets specifically depends on the particle’s orbit size. The revealed effect may control the structure of planetesimal discs in planetary systems: the orbital zone between the 2/1 and 1/1 resonances with a planet should be normally free from low-mass material (only that occasionally captured in the first-order 3/2 or 4/3 resonances may survive); whereas any low-mass population inner to the 2/1 resonance location should be normally long-lived (if not perturbed by secular resonances, which we do not consider in this study).

Funder

Russian Science Foundation

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3