Constraints on the presence of platinum and gold in the spectra of the kilonova AT2017gfo

Author:

Gillanders J H1ORCID,McCann M2,Sim S A1,Smartt S J1,Ballance C P2

Affiliation:

1. Astrophysics Research Centre, School of Mathematics and Physics, Queen’s University Belfast, BT7 1NN Belfast, UK

2. Centre for Theoretical Atomic, Molecular and Optical Physics, School of Mathematics and Physics, Queen’s University Belfast, BT7 1NN Belfast, UK

Abstract

ABSTRACT Binary neutron star mergers are thought to be one of the dominant sites of production for rapid neutron capture elements, including platinum and gold. Since the discovery of the binary neutron star merger GW170817, and its associated kilonova AT2017gfo, numerous works have attempted to determine the composition of its outflowing material, but they have been hampered by the lack of complete atomic data. Here, we demonstrate how inclusion of new atomic data in synthetic spectra calculations can provide insights and constraints on the production of the heaviest elements. We employ theoretical atomic data (obtained using $\small {\rm GRASP}^{0}$) for neutral, singly and doubly ionized platinum and gold, to generate photospheric and simple nebular phase model spectra for kilonova-like ejecta properties. We make predictions for the locations of strong transitions, which could feasibly appear in the spectra of kilonovae that are rich in these species. We identify low-lying electric quadrupole and magnetic dipole transitions that may give rise to forbidden lines when the ejecta becomes optically thin. The strongest lines lie beyond 8000 Å, motivating high quality near-infrared spectroscopic follow-up of kilonova candidates. We compare our model spectra to the observed spectra of AT2017gfo, and conclude that no platinum or gold signatures are prominent in the ejecta. From our nebular phase modelling, we place tentative upper limits on the platinum and gold mass of ≲ a few 10−3 M⊙, and ≲ 10−2 M⊙, respectively. This work demonstrates how new atomic data of heavy elements can be included in radiative transfer calculations, and motivates future searches for elemental signatures.

Funder

Science and Technology Facilities Council

EPSRC

European Southern Observatory

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3