Radio variability from corotating interaction regions threading Wolf–Rayet winds

Author:

Ignace Richard1,St-Louis Nicole2ORCID,Prinja Raman K3

Affiliation:

1. Department of Physics and Astronomy, East Tennessee State University, Johnson City, TN 37614, USA

2. Département de Physique, Université de Montréal, CP 6128, Succursale Centre-Ville, Montréal, QC H3C 3J7, Canada

3. Department of Physics & Astronomy, University College London, Gower Street, London WC1E 6BT, UK

Abstract

ABSTRACT The structured winds of single massive stars can be classified into two broad groups: stochastic structure and organized structure. While the former is typically identified with clumping, the latter is typically associated with rotational modulations, particularly the paradigm of corotating interaction regions (CIRs). While CIRs have been explored extensively in the ultraviolet band, and moderately in the X-ray and optical, here we evaluate radio variability from CIR structures assuming free–free opacity in a dense wind. Our goal is to conduct a broad parameter study to assess the observational feasibility, and to this end, we adopt a phenomenological model for a CIR that threads an otherwise spherical wind. We find that under reasonable assumptions, it is possible to obtain radio variability at the 10 per cent level. The detailed structure of the folded light curve depends not only on the curvature of the CIR, the density contrast of the CIR relative to the wind, and viewing inclination, but also on wavelength. Comparing light curves at different wavelengths, we find that the amplitude can change, that there can be phase shifts in the waveform, and the entire waveform itself can change. These characterstics could be exploited to detect the presence of CIRs in dense, hot winds.

Funder

National Science Foundation

Natural Sciences and Engineering Research Council of Canada

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3