An integrated DEM code for tracing the entire regolith mass movement on asteroids

Author:

Song Zhijun1,Yu Yang1ORCID,Soldini Stefania2,Cheng Bin3ORCID,Michel Patrick45

Affiliation:

1. School of Aeronautic Science and Engineering, Beihang University , Beijing 100191 , China

2. Department of Mechanical, Materials and Aerospace Engineering, University of Liverpool , Liverpool L69 3BX , UK

3. School of Aerospace, Tsinghua University , Beijing 100086 , China

4. Université Côte dAzur, Observatoire de la Côte dAzur, CNRS, Laboratoire Lagrange , Nice F-06304 , France

5. Department of Systems Innovation, School of Engineering, The University of Tokyo, , Tokyo 113-0033 , Japan

Abstract

ABSTRACT This paper presents a general strategy for tracking the scale-span movement process of asteroid regolith materials. It achieves the tracking of the mass movement on the asteroid at a realistic scale, under conditions of high-resolution asteroid surface topography (submeter level) and actual regolith particle sizes. To overcome the memory exponential expansion caused by the enlarged computational domain, we improved the conventional cell-linked list method so that it can be applied to arbitrarily large computational domains around asteroids. An efficient contact detection algorithm for particles and polyhedral shape models of asteroids is presented, which avoids traversing all surface triangles and thus allows us to model high-resolution surface topography. A parallel algorithm based on Compute Unified Device Architecture for the gravitational field of the asteroid is presented. Leveraging heterogeneous computing features, further architectural optimization overlaps computations of the long-range and short-range interactions, resulting in an approaching doubling of computational efficiency compared to the code lacking architectural optimizations. Using the above strategy, a specific high-fidelity discrete element method code that integrates key mechanical models, including the irregular gravitational field, the interparticle and particle-surface interactions, and the coupled dynamics between the particles and the asteroid, is developed to track the asteroid regolith mass movement. As tests, we simulated the landslide of a sand pile on the asteroid’s surface during spin-up. The simulation results demonstrate that the code can track the mass movement of the regolith particles on the surface of the asteroid from local landslides to mass leakage with good accuracy.

Funder

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3