Time dependence of advection-dominated accretion flow around a rotating compact object

Author:

Habibi Fahimeh1

Affiliation:

1. Department of Physics, Faculty of Sciences, University of Birjand, Brjand, Iran

Abstract

ABSTRACT Time evolution of advection-dominated accretion flow (ADAF) around a rotating compact object is presented. The time-dependent equations of fluid including the Coriolis force along with the centrifugal and pressure gradient forces are derived. In this research, it is assumed that angular momentum transport is due to viscous turbulence and the α-prescription is used for the kinematic coefficient of viscosity. Moreover, the general relativistic effects are neglected. In order to solve the equations, we have used a self-similar solution. The solutions show that the behaviour of the physical quantities in a dynamical ADAF is different from that for a steady accretion flow. Our results indicate that the physical quantities are dependent of rotation parameter which is defined as the ratio of the intrinsic angular velocity of the central body to the angular velocity of disc. Also, the effect of rotation parameter on these quantities is different for co and counter-rotating flows. The solution shows that by increasing the rotation parameter a, inflow–outflow region approaches the central object for co-rotating flow and moves outwards for counter-rotating flow. We find that when flow is fully advection dominated (f → 1), the entire gas has positive Bernoulli function. Also, we suggest that the Bernoulli function becomes more positive when the effect of rotation on the structure of disc decreases.

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The dynamics of magnetized viscous-resistive ADAFs under a self-similar evolution;International Journal of Modern Physics D;2022-08-20

2. Similarity solutions for a magnetized supercritical accretion disc around a rotating object;Monthly Notices of the Royal Astronomical Society;2022-07-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3