Affiliation:
1. Energetic Cosmos Laboratory, Nazarbayev University , Nur-Sultan 010000, Kazakhstan
2. Berkeley Center for Cosmological Physics & Berkeley Lab, University of California , Berkeley, CA 94720, USA
Abstract
ABSTRACT
Gravitationally lensed sources may have unresolved or blended multiple images, and for time varying sources, the light curves from individual images can overlap. We use convolutional neural nets to both classify the light curves as due to unlensed, double, or quad lensed sources and fit for the time delays. Focusing on lensed supernova systems with time delays Δt ≳ 6 d, we achieve 100 per cent precision and recall in identifying the number of images and then estimating the time delays to σΔt ≈ 1 d, with a 1000× speedup relative to our previous Monte Carlo technique. This also succeeds for flux noise levels $\sim 10{{\ \rm per\ cent}}$. For Δt ∈ [2, 6] d, we obtain 94–98 per cent accuracy, depending on image configuration. We also explore using partial light curves where observations only start near maximum light, without the rise time data, and quantify the success.
Funder
U.S. Department of Energy
Office of Science
Publisher
Oxford University Press (OUP)
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献