Modelling stellar convective transport with plumes – I. Non-equilibrium turbulence effect in double-averaging formulation

Author:

Yokoi N1,Masada Y2,Takiwaki T3

Affiliation:

1. Institute of Industrial Science, University of Tokyo , Komaba, Meguro, Tokyo 153-8505, Japan

2. Department of Applied Physics, Faculty of Science, Fukuoka University , Fukuoka 814-0180, Japan

3. Division of Science, National Astronomical Observatory of Japan (NAOJ) , Osawa, Mitaka, Tokyo 181-8588, Japan

Abstract

ABSTRACT Plumes in a convective flow are considered to be relevant to the turbulent transport in convection. The effective mass, momentum, and heat transports in the convective turbulence are investigated in the framework of time–space double averaging procedure, where a field quantity is decomposed into three parts: the spatiotemporal mean (spatial average of the time-averaged) field, the dispersion or coherent fluctuation, and the random or incoherent fluctuation. With this framework, turbulent correlations in the mean-field equations are divided into the dispersion/coherent and random/incoherent correlation part. By reckoning the plume as the coherent fluctuation, a transport model for the convective turbulence is constructed with the aid of the non-equilibrium effect, in which the change of turbulence characteristics along the mean stream is taken into account for the modelling of the turbulent transport coefficients. In this work, for the first time, change of turbulence properties along plume motions is incorporated into the expression of the turbulent transport coefficients. This non-equilibrium model is applied to a stellar convective flow. One of the prominent characteristics of a surface cooling-driven convection, the enhanced and localized turbulent mass flux below the surface layer, which cannot be reproduced at all by the usual eddy-diffusivity model with mixing length theory (MLT), is well reproduced by the present model. Our results show that the incorporation of plume motion into turbulent transport model is an important and very relevant extension of mean-field theory beyond the heuristic gradient transport model with MLT.

Funder

Japan Society for the Promotion of Science

National Astronomical Observatory of Japan

MEXT

National Institutes of Natural Sciences

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3