Splash bridge models of inclined, gas-rich, direct galaxy collisions

Author:

Yeager Travis R1ORCID,Struck Curtis1

Affiliation:

1. Department of Physics and Astronomy, Iowa State University, Ames, IA, USA

Abstract

ABSTRACT Splash bridges are formed from the direct inelastic collision of gas-rich galaxies. Recent multiwavelength observations of the Taffy galaxies, UGC 12914/15, have revealed complicated gas structures in the bridge. We have upgraded the sticky particle simulation code of Yeager & Struck by adding: the ability to adjust the relative inclination of the gas discs, the ability to track cloud–cloud collisions over time, and additional cooling processes. Inclination effects lead to various morphological features, including filamentary streams of gas stripped from the smaller galactic disc. The offset of disc centres at impact determines whether or not these streams flow in a single direction or multiple directions, even transverse to the motion of the two galaxies. We also find that, across many types of direct collision, independent of the inclination or offset, the distributions of weighted Mach numbers and shock velocities in colliding clouds relax to a very similar form. There is good evidence of prolonged turbulence in the gas of each splash bridge for all inclinations and offsets tested, as a result of continuing cloud collisions, which in turn are the result of shearing and differentially accelerated trajectories. The number distribution of high velocity shocks in cloud collisions, produced in our low inclination models, are in agreement with those observed by Appleton et al. in the Taffy Galaxies with ALMA.

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3