CO in the C1 globule of the Helix nebula with ALMA

Author:

Andriantsaralaza M1ORCID,Zijlstra A12,Avison A13ORCID

Affiliation:

1. Jodrell Bank Centre for Astrophysics, The University of Manchester, Manchester M13 9PL, UK

2. Laboratory for Space Research, University of Hong Kong, Pok Fu Lam Road, Hong Kong

3. UK Atacama Large Millimeter/submillimeter Array Regional Centre Node, Manchester M13 9PL, UK

Abstract

ABSTRACT We present and analyse 12CO, 13CO, and C18O(2–1) ALMA observations of the C1 globule inside the Helix nebula in order to determine its physical properties. Our findings confirm the molecular nature of the globule with a multipeak structure. The 12CO line has a high optical depth τ ∼10. The derived 12C/13C∼10 and 16O/18O∼115 ratios are not in agreement with the expected isotopic ratios of carbon-rich AGB stars. Assuming that the 12CO optical depth has been underestimated, we can find a consistent fit for an initial mass of 2 M⊙. We obtain a molecular mass of $\sim 2\, \times 10^{-4}\, \mbox{M}_\odot$ for the C1 globule, which is much higher than its mass in the literature. Clumping could play a role in the high molecular mass of the knot. The origin of the tail is discussed. Our findings show that the most probable model appears to be shadowing. The kinematics and molecular morphology of the knot are not consistent with a wind-swept model and the photoevaporation model alone is not enough to explain the nature of the globule. We propose an integrated model where the effects of the photoevaporation, the stream, and shadowing models are all considered in the tail shaping process.

Funder

Science and Technology Facilities Council

NSF

NINS

NRC

MOST KASI

European Space Agency

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3