Affiliation:
1. Dipartimento di Fisica e Astronomia, Universitá di Bologna, Via Gobetti 92/3, I-40121 Bologna, Italy
2. Hamburger Sternwarte, Gojenbergsweg 112, D-21029 Hamburg, Germany
3. Istituto di Radio Astronomia, INAF, Via Gobetti 101, I-40121 Bologna, Italy
Abstract
ABSTRACT
The growth of large-scale cosmic structure is a beautiful exemplification of how complexity can emerge in our Universe, starting from simple initial conditions and simple physical laws. Using enzo cosmological numerical simulations, I applied tools from Information Theory (namely, ‘statistical complexity’) to quantify the amount of complexity in the simulated cosmic volume, as a function of cosmic epoch and environment. This analysis can quantify how much difficult to predict, at least in a statistical sense, is the evolution of the thermal, kinetic, and magnetic energy of the dominant component of ordinary matter in the Universe (the intragalactic medium plasma). The most complex environment in the simulated cosmic web is generally found to be the periphery of large-scale structures (e.g. galaxy clusters and filaments), where the complexity is on average ∼10–102 times larger than in more rarefied regions, even if the latter dominate the volume-integrated complexity of the simulated Universe. If the energy evolution of gas in the cosmic web is measured on a ≈100 ${\rm kpc}\, h^{-1}$ resolution and over a ≈200 $\rm Myr$ time-scale, its total complexity is in the range of $\sim 10^{16}\!-\!10^{17} \rm \,bits$, with little dependence on the assumed gas physics, cosmology, or cosmic variance.
Publisher
Oxford University Press (OUP)
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献