Resolving shocks and filaments in galaxy formation simulations: effects on gas properties and star formation in the circumgalactic medium

Author:

Bennett Jake S12ORCID,Sijacki Debora12

Affiliation:

1. Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA, UK

2. Kavli Institute for Cosmology Cambridge, University of Cambridge, Madingley Road, Cambridge CB3 0HA, UK

Abstract

ABSTRACT There is an emerging consensus that large amounts of gas do not shock heat in the circumgalactic medium (CGM) of massive galaxies, but instead pierce deep into haloes from the cosmic web via filaments. To better resolve this process numerically, we have developed a novel ‘shock refinement’ scheme within the moving mesh code arepo that adaptively improves resolution around shocks on-the-fly in galaxy formation simulations. We apply this to a massive ∼1012 M⊙ halo at z = 6 using the successful FABLE model, increasing the mass resolution by a factor of 512. With better refinement there are significantly more dense, metal-poor and fast-moving filaments and clumps flowing into the halo, leading to a more multiphase CGM. We find a ∼50 per cent boost in cool-dense gas mass and a 25 per cent increase in inflowing mass flux. Better resolved accretion shocks cause turbulence to increase dramatically, leading to a doubling in the halo’s non-thermal pressure support. Despite much higher thermalization at shocks with higher resolution, increased cooling rates suppress the thermal energy of the halo. In contrast, the faster and denser filaments cause a significant jump in the bulk kinetic energy of cool-dense gas, while in the hot phase turbulent energy increases by up to ∼150 per cent. Moreover, H i covering fractions within the CGM increase by up to 60 per cent. Consequently, star formation is spread more widely and we predict a population of metal-poor stars forming within primordial filaments that deep JWST observations may be able to probe.

Funder

Science and Technology Facilities Council

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3