Characteristics of stripes-pattern radio-emission sources

Author:

Alielden Khaled1ORCID

Affiliation:

1. Department of Physics, Aberystwyth University , Penglais, Aberystwyth, Ceredigion SY23 3BZ, UK

Abstract

ABSTRACT An investigation of the generation mechanism for stripes-pattern radio spectra is important for an understanding of the dynamics of non-thermal electrons in several astronomical objects, including the Sun, Jupiter, and the Crab Pulsar. A new analytical study is carried out to identify the plasma characteristics of fiber- and zebra-pattern emission sources without an underlying density or magnetic model. The analysis demonstrates that the source region of the stripes emission is located underneath the reconnection point, where the ratio s of the instability growth rate to the electron gyrofrequency ωc does not equal unity; that is, s = k⊥v⊥/ωc ≠ 1. When |s| < 1, the plasma condition of the source region becomes k⊥v⊥ < ωp < ωc, where ωp is the plasma frequency, and the emission source is likely to produce a fiber radio burst. For |s| > 1, the plasma condition of the source region is ωc < ωp < k⊥v⊥, and the emission source is likely to produce zebra-pattern emission. This indicates that the magnetic field in the source region of zebra-pattern radio emission is weak and it is relatively high in the source region of fiber-pattern emission. An approach is applied to estimate the plasma parameters of a zebra-pattern emission source observed on 2011 June 21. The behaviour of the blasted medium, which is produced by magnetic reconnection, is investigated. The results show that the blasted medium propagates isothermally as a sausage-like wave for a short time during the emission. The study discusses the conditions for producing different types of striped radio emission and provides a simple computational approach that could be useful in a number of astronomical contexts.

Funder

University of Glasgow

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3