Convective core entrainment in 1D main-sequence stellar models

Author:

Scott L J A1ORCID,Hirschi R12,Georgy C3,Arnett W D4,Meakin C45,Kaiser E A1ORCID,Ekström S3,Yusof N6ORCID

Affiliation:

1. Astrophysics Group, Lennard-Jones Laboratories, Keele University, Keele ST5 5BG, UK

2. Institute for the Physics and Mathematics of the Universe (WPI), University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa 277-8583, Japan

3. Department of Astronomy, University of Geneva, Ch. Maillettes 51, 1290 Versoix, Switzerland

4. Steward Observatory, University of Arizona, 933 N. Cherry Avenue, Tucson AZ 85721, USA

5. Pasadena Consulting Group, 1075 N Mar Vista Ave, Pasadena, CA 91104 USA

6. Department of Physics, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia

Abstract

ABSTRACT 3D hydrodynamics models of deep stellar convection exhibit turbulent entrainment at the convective-radiative boundary which follows the entrainment law, varying with boundary penetrability. We implement the entrainment law in the 1D Geneva stellar evolution code. We then calculate models between 1.5 and 60 M⊙ at solar metallicity (Z = 0.014) and compare them to previous generations of models and observations on the main sequence. The boundary penetrability, quantified by the bulk Richardson number, RiB, varies with mass and to a smaller extent with time. The variation of RiB with mass is due to the mass dependence of typical convective velocities in the core and hence the luminosity of the star. The chemical gradient above the convective core dominates the variation of RiB with time. An entrainment law method can therefore explain the apparent mass dependence of convective boundary mixing through RiB. New models including entrainment can better reproduce the mass dependence of the main-sequence width using entrainment law parameters A ∼ 2 × 10−4 and n = 1. We compare these empirically constrained values to the results of 3D hydrodynamics simulations and discuss implications.

Funder

ERC

Ministry of Education, Culture, Sports, Science and Technology

National Science Foundation

COST

STFC

BEIS

Durham University

BIS

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 43 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3