On the likely magnesium–iron silicate dusty tails of catastrophically evaporating rocky planets

Author:

Campos Estrada Beatriz1234ORCID,Owen James E4ORCID,Jankovic Marija R5ORCID,Wilson Anna4,Helling Christiane23

Affiliation:

1. Centre for ExoLife Sciences, Niels Bohr Institute , Øster Voldgade 5, DK-1350 Copenhagen , Denmark

2. Space Research Institute, Austrian Academy of Sciences , Schmiedlstrasse 6, A-8042 Graz , Austria

3. TU Graz, Fakultät für Mathematik, Physik und Geodäsie , Petersgasse 16, A-8010 Graz , Austria

4. Astrophysics Group, Imperial College London, Blackett Laboratory , Prince Consort Road, London SW7 2AZ , UK

5. Institute of Physics Belgrade, University of Belgrade , Pregrevica 118, 11080 Belgrade , Serbia

Abstract

ABSTRACT Catastrophically evaporating rocky planets provide a unique opportunity to study the composition of small planets. The surface composition of these planets can be constrained via modelling their comet-like tails of dust. In this work, we present a new self-consistent model of the dusty tails: we physically model the trajectory of the dust grains after they have left the gaseous outflow, including an on-the-fly calculation of the dust cloud’s optical depth. We model two catastrophically evaporating planets: KIC 1255 b and K2-22 b. For both planets, we find the dust is likely composed of magnesium–iron silicates (olivine and pyroxene), consistent with an Earth-like composition. We constrain the initial dust grain sizes to be ∼ 1.25–1.75 μm and the average (dusty) planetary mass-loss rate to be ∼ 3$\, M_{\oplus } \mathrm{Gyr^{-1}}$. Our model shows that the origin of the leading tail of dust of K2-22 b is likely a combination of the geometry of the outflow and a low radiation pressure force to stellar gravitational force ratio. We find the optical depth of the dust cloud to be a factor of a few in the vicinity of the planet. Our composition constraint supports the recently suggested idea that the dusty outflows of these planets go through a greenhouse effect–nuclear winter cycle, which gives origin to the observed transit depth time variability. Magnesium–iron silicates have the necessary visible-to-infrared opacity ratio to give origin to this cycle in the high mass-loss state.

Funder

Horizon 2020 - Research and Innovation Framework Programme

Royal Society

Horizon Europe Programme

Institute of Physics Belgrade

European Research Council

Publisher

Oxford University Press (OUP)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Neglected Silicon Dioxide Polymorphs as Clouds in Substellar Atmospheres;The Astrophysical Journal Letters;2024-09-01

2. Climate change in hell: Long-term variation in transits of the evaporating planet K2-22b;Astronomy & Astrophysics;2024-08

3. The evolution of catastrophically evaporating rocky planets;Monthly Notices of the Royal Astronomical Society;2024-01-17

4. Super-Earths and Earth-like exoplanets;Reference Module in Earth Systems and Environmental Sciences;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3