Blue galaxies: modelling nebular He ii emission in high redshift galaxies

Author:

Barrow Kirk S S1

Affiliation:

1. Kavli Institute of Particle Astrophysics and Cosmology, Stanford University, 452 Lomita Mall Stanford, CA 94305-4085, USA

Abstract

ABSTRACT Using cosmological simulations to make useful, scientifically relevant emission line predictions is a relatively new and rapidly evolving field. However, nebular emission lines have been particularly challenging to model because they are extremely sensitive to the local photoionization balance, which can be driven by a spatially dispersed distribution of stars amidst an inhomogeneous absorbing medium of dust and gas. As such, several unmodelled mysteries in observed emission line patterns exist in the literature. For example, there is some question as to why He ii λ4686/H β ratios in observations of lower metallicity dwarf galaxies tend to be higher than model predictions. Since hydrodynamic cosmological simulations are best suited to this mass and metallicity regime, this question presents a good test case for the development of a robust emission line modelling pipeline. The pipeline described in this work can model a process that produces high He ii λ4686/H β ratios and eliminate some of the modelling discrepancy for ratios below 3 per cent without including AGNs, X-ray binaries, high mass binaries, or a top-heavy stellar initial mass function. These ratios are found to be more sensitive to the presence of 15 Myr or longer gaps in the star formation histories than to extraordinary ionization parameters or specific star formation rates. They also closely correspond to the WR phase of massive stars. In addition to the investigation into He ii λ4686/H β ratios, this work charts a general path forward for the next generation of nebular emission line modelling studies.

Funder

XSEDE

Stanford University

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3