Prospects of newly detecting nearby star-forming galaxies by the Cherenkov Telescope Array

Author:

Shimono Naoya1,Totani Tomonori12,Sudoh Takahiro1

Affiliation:

1. Department of Astronomy, the University of Tokyo, 7-3-1 Hongo, Tokyo 113-0033, Japan

2. Research Center for the Early Universe, the University of Tokyo, 7-3-1 Hongo, Tokyo 113-0033, Japan

Abstract

ABSTRACT Prospects of the Cherenkov Telescope Array (CTA) for the study of very high energy gamma-ray emission from nearby star-forming galaxies are investigated. In the previous work, we constructed a model to calculate luminosity and energy spectrum of pion-decay gamma-ray emission produced by cosmic ray interaction with the interstellar medium (ISM), from four physical quantities of galaxies [star formation rate (SFR), gas mass, stellar mass, and effective radius]. The model is in good agreement with the observed GeV–TeV emission of several nearby galaxies. Applying this model to nearby galaxies that are not yet detected in TeV (mainly from the KINGFISH catalogue), their hadronic gamma-ray luminosities and spectra are predicted. We identify galaxies of the highest chance of detection by CTA, including NGC 5236, M33, NGC 6946, and IC 342. Concerning gamma-ray spectra, NGC 1482 is particularly interesting because our model predicts that this galaxy is close to the calorimetric limit and its gamma-ray spectral index in GeV–TeV is close to that of cosmic ray protons injected into ISM. Therefore, this galaxy may be detectable by CTA even though its GeV flux is below the Fermi Large Area Telescope sensitivity limit. In the TeV regime, most galaxies are not in the calorimetric limit, and the predicted TeV flux is lower than that assuming a simple relation between the TeV luminosity and SFR of M82 and NGC 253, typically by a factor of 15. This means that a more sophisticated model beyond the calorimetric limit assumption is necessary to study TeV emission from star-forming galaxies.

Funder

Japan Society for the Promotion of Science

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3