Colour–magnitude diagrams of transiting exoplanets – III. A public code, nine strange planets, and the role of phosphine

Author:

Dransfield Georgina1ORCID,Triaud Amaury H M J1ORCID

Affiliation:

1. School of Physics and Astronomy, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK

Abstract

ABSTRACT Colour–magnitude diagrams provide a convenient way of comparing populations of similar objects. When well populated with precise measurements, they allow quick inferences to be made about the bulk properties of an astronomic object simply from its proximity on a diagram to other objects. We present here a python toolkit that allows a user to produce colour–magnitude diagrams of transiting exoplanets, comparing planets to populations of ultra-cool dwarfs, of directly imaged exoplanets, to theoretical models of planetary atmospheres, and to other transiting exoplanets. Using a selection of near- and mid-infrared colour–magnitude diagrams, we show how outliers can be identified for further investigation, and how emerging subpopulations can be identified. Additionally, we present evidence that observed differences in the Spitzer’s 4.5 μm flux, between irradiated Jupiters and field brown dwarfs, might be attributed to phosphine, which is susceptible to photolysis. The presence of phosphine in low-irradiation environments may negate the need for thermal inversions to explain eclipse measurements. We speculate that the anomalously low 4.5 μm flux of the nightside of HD 189733b and the daysides of GJ 436b and GJ 3470b might be caused by phosphine absorption. Finally, we use our toolkit to include Hubble Wide Field Camera 3 spectra, creating a new photometric band called the ‘Water band’ (WJH band) in the process. We show that the colour index [WJH − H] can be used to constrain the C/O ratio of exoplanets, showing that future observations with James Webb Space Telescope and Ariel will be able to distinguish these populations if they exist, and select members for future follow-up.

Funder

H2020 European Research Council

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3