Star formation quenching imprinted on the internal structure of naked red nuggets

Author:

Martín-Navarro Ignacio12,van de Ven Glenn34ORCID,Yıldırım Akın5ORCID

Affiliation:

1. University of California Santa Cruz, 1156 High Str, Santa Cruz, CA 95064, USA

2. Max-Planck Institut für Astronomie, Konigstuhl 17, D-69117 Heidelberg, Germany

3. European Southern Observatory, Karl-Schwarzschild-Str 2, D-85748 Garching b. München, Germany

4. Department of Astrophysics, University of Vienna, Türkenschanzstrasse 17, 1180 Vienna, Austria

5. Max-Planck Institut für Astrophysics, Karl-Schwarzschild-Str 1, D-85741 Garching, Germany

Abstract

ABSTRACT The formation and assembly process of massive galaxies is a combination of two phases: an initial in-situ-dominated one followed by an ex-situ-dominated evolution. Separating these two contributions is therefore crucial to understand the baryonic cycle within massive haloes. A recently discovered population of so-called naked red nuggets, galaxies that shortcut the ex-situ stage preserving their pristine properties, presents a unique opportunity to study in detail star formation in massive galaxies without the confounding effect of later accretion. We investigate the spatially resolved star formation histories of a sample of 12 naked red nuggets. We measure how their radial light distributions, star formation rates, and central densities evolved in time. We find that, while forming stars, red nuggets become gradually more concentrated, reaching a maximum concentration at quenching. After being quenched, they kept forming stars in a more discy-like configuration. Our measurements suggest that supermassive black holes and host galaxies grow their mass in a self-regulated way until a characteristic M•/Mhalo is reached. Once black holes are massive enough, red nuggets get quenched and depart from the star formation main sequence. While in the main sequence, red nuggets evolve at roughly constant star formation rate. This can explain up to ∼0.3 dex of the scatter of the star formation main sequence, as well as its higher normalization observed in the early Universe. Hence, our results suggest that the main sequence is composed of populations of galaxies at different evolutionary stages and that the scatter is therefore due to secular processes.

Funder

Marie Skłodowska-Curie Individual

Ministry of Economy and Competitiveness

European Research Council

Horizon 2020

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3