Magnetic fluxes of solar active regions of different magneto-morphological classes – I. Cyclic variations

Author:

Abramenko Valentina I1,Suleymanova Regina A1,Zhukova Anastasija V1

Affiliation:

1. Crimean Astrophysical Observatory, Russian Academy of Science , Nauchny, Bakhchisaray 298409, Russia

Abstract

ABSTRACT Data for 3046 solar active regions (ARs) observed since 1996 May 12 to 2021 December 27 were utilized to explore how the magnetic fluxes from ARs of different complexity follow the solar cycle. Magnetograms from the Michelson Doppler Imager instrument on the Solar and Heliospheric Observatory and from the Helioseismic and Magnetic Imager instrument on the Solar Dynamics Observatory were utilized. Each AR was classified as a regular bipolar AR (classes A1 or A2), or as an irregular bipolar AR (class B1), or as a multipolar AR (classes B2 or B3). Unipolar ARs were segregated into a specific class U. We found the following results. Unsigned magnetic fluxes from ARs of different classes evolve synchronously following the cycle, the correlation coefficient between the flux curves varies in a range of 0.70–0.99. The deepest solar minimum is observed simultaneously for all classes. Only the most simple ARs were observed during a deepest minimum: A1- and B1-class ARs. The overall shape of a cycle is governed by the regular ARs, whereas the fine structure of a solar maximum is determined by the most complex irregular ARs. Approximately equal amount of flux (45–50 per cent of the total flux) is contributed by the A-class and B-class ARs during a solar maximum. Thus, observations allow us to conclude that the appearance of ARs with the magnetic flux above 1021 Mx is caused by the solar dynamo that operates as a unique process displaying the properties of a non-linear dynamical dissipative system with a cyclic behaviour and unavoidable fluctuations.

Funder

NASA

Russian Science Foundation

National Oceanic and Atmospheric Administration

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3