Testing the surface brightness fluctuation method on dwarf galaxies in the COSMOS field

Author:

Foster Lauren M12ORCID,Taylor James E1ORCID,Blakeslee John P3

Affiliation:

1. Department of Physics and Astronomy, University of Waterloo , 200 University Avenue West, Waterloo, ON N2L 3G1 , Canada

2. Department of Physics and Astronomy, McMaster University , 1280 Main Street West, Hamilton, ON L8S 3L8 , Canada

3. NSF’s NOIRLab , 950 N Cherry Avenue, Tucson, AZ 85719 , USA

Abstract

ABSTRACT Dwarf galaxies are important tracers of small-scale cosmological structure, yet much of our knowledge about these systems comes from the limited sample of dwarf galaxies within the Local Group. To make a comprehensive inventory of dwarf populations in the local Universe, we require effective methods for deriving distance estimates for large numbers of faint, low surface brightness objects. Here we test the surface brightness fluctuation (SBF) method, traditionally applied to brighter early-type galaxies, on a sample of 20 nearby dwarf galaxies detected in the Cosmological Evolution Survey (COSMOS) field. These objects are partially resolved in the Hubble Space Telescope (HST) Advanced Camera for Surveys (ACS) images and have confirmed redshift distances in the range 17–130 Mpc. We discuss the many model choices required in applying the SBF method and explore how these affect the final distance estimates. Amongst other variations on the method, when applying the SBF method, we alter the standard equation to include a term accounting for the power spectrum of the background, greatly improving our results. For the most robust modelling choices, we find a roughly Gaussian SBF signal that correlates linearly with distance out to distances of 50–100 Mpc, but with only a fraction of the power expected. At larger distances, there is excess power relative to that predicted, probably from undetected point sources. Overall, obtaining accurate SBF distances to faint, irregular galaxies remains challenging, but may yet prove possible with the inclusion of more information about galaxy properties and point source populations, and the use of more advanced techniques.

Funder

NSERC

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3