The morphology of star-forming gas and its alignment with galaxies and dark matter haloes in the EAGLE simulations

Author:

Hill Alexander D1ORCID,Crain Robert A1ORCID,Kwan Juliana1,McCarthy Ian G1ORCID

Affiliation:

1. Astrophysics Research Institute, Liverpool John Moores University, 146 Brownlow Hill, Liverpool L3 5RF, UK

Abstract

ABSTRACT We present measurements of the morphology of star-forming gas in galaxies from the EAGLE simulations, and its alignment relative to stars and dark matter (DM). Imaging of such gas in the radio continuum enables weak lensing experiments that complement traditional optical approaches. Star-forming gas is typically more flattened than the stars and DM within halo centres, particularly for present-day structures of total mass $\sim 10^{12-12.5}\, {\rm M}_\odot$, which preferentially host star-forming galaxies with rotationally supported stellar discs. Such systems have oblate, spheroidal star-forming gas distributions, but in both less- and more-massive subhaloes the distributions tend to be prolate, and its morphology correlates positively and significantly with that of its host galaxy’s stars, both in terms of sphericity and triaxiality. The minor axis of star-forming gas most commonly aligns with the minor axis of its host subhalo’s central DM distribution, but this alignment is often poor in subhaloes with a prolate DM distribution. Star-forming gas aligns with the DM at the centre of its parent subhalo less strongly than is the case for stars, but its morphological minor axis aligns closely with its kinematic axis, affording a route to observational identification of the unsheared morphological axis. The projected ellipticities of star-forming gas in EAGLE are consistent with shapes inferred from high-fidelity radio continuum images, and they exhibit greater shape noise than is the case for images of the stars, owing to the greater characteristic flattening of star-forming gas with respect to stars.

Funder

STFC

European Research Council

Royal Society

LJMU

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Constraining the shape of dark matter haloes with globular clusters and diffuse stellar light in the E-MOSAICS simulations;Monthly Notices of the Royal Astronomical Society;2023-03-28

2. Early evolution and three-dimensional structure of embedded star clusters;Monthly Notices of the Royal Astronomical Society;2023-02-23

3. Shape, alignment, and mass distribution of baryonic and dark-matter halos in one EAGLE simulation;Astronomy & Astrophysics;2023-01

4. Intrinsic alignments of bulges and discs;Monthly Notices of the Royal Astronomical Society;2022-05-30

5. Intrinsic alignments of the extended radio continuum emission of galaxies in the EAGLE simulations;Monthly Notices of the Royal Astronomical Society;2022-02-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3