Multi-epoch machine learning 1: Unravelling nature versus nurture for galaxy formation

Author:

McGibbon Robert J1ORCID,Khochfar Sadegh1

Affiliation:

1. Institute for Astronomy, University of Edinburgh, Royal Observatory, Edinburgh EH9 3HJ

Abstract

Abstract We present a novel machine learning method for predicting the baryonic properties of dark matter only subhalos from N-body simulations. Our model is built using the extremely randomized tree (ERT) algorithm and takes subhalo properties over a wide range of redshifts as its input features. We train our model using the IllustrisTNG simulations to predict blackhole mass, gas mass, magnitudes, star formation rate, stellar mass, and metallicity. We compare the results of our method with a baseline model from previous works, and against a model that only considers the mass history of the subhalo. We find that our new model significantly outperforms both of the other models. We then investigate the predictive power of each input by looking at feature importance scores from the ERT algorithm. We produce feature importance plots for each baryonic property, and find that they differ significantly. We identify low redshifts as being most important for predicting star formation rate and gas mass, with high redshifts being most important for predicting stellar mass and metallicity, and consider what this implies for nature versus nurture. We find that the physical properties of galaxies investigated in this study are all driven by nurture and not nature. The only property showing a somewhat stronger impact of nature is the present-day star formation rate of galaxies. Finally we verify that the feature importance plots are discovering physical patterns, and that the trends shown are not an artefact of the ERT algorithm.

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3