A proposed alternative dynamical history for 2P/Encke that explains the taurid meteoroid complex

Author:

Egal A123ORCID,Wiegert P12,Brown P G12

Affiliation:

1. Department of Physics and Astronomy, The University of Western Ontario , London, Ontario N6A 3K7, Canada

2. Institute for Earth and Space Exploration (IESX), The University of Western Ontario , London, Ontario N6A 3K7, Canada

3. IMCCE, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Universités , UPMC Univ. Paris 06, Univ. Lille, France

Abstract

ABSTRACT The Taurid Meteoroid Complex (TMC) is a broad stream of meteoroids that produces several annual meteor showers on Earth. If the linkage between these showers and 2P/Encke is at the centre of most TMC models, the small size and low activity of the comet suggest that 2P/Encke is not the unique parent body of the Taurids. Here, we simulate the formation of the TMC from 2P/Encke and several NEAs. In total, we explored more than a hundred stream formation scenarios using clones of 2P/Encke. Each modelled stream was integrated and compared with present-day Taurid observations. As previously reported, we find that even slight variations of 2P/Encke’s orbit modifie considerably the characteristics of the simulated showers. Most of the comet’s clones, including the nominal one, appear to reproduce the radiant structure of the Taurid meteors but do not match the observed time and duration of the showers. However, the radiants and timing of most Taurid showers are well reproduced by a particular clone of the comet. Our analysis thus suggest that with this specific dynamical history, 2P/Encke is the sole parent of the four major TMC showers that have ages from 7 to 21 ka. Our modelling also predicts that the 2022 Taurid Resonant Swarm return will be comparable in strength to the 1998, 2005, and 2015 returns. While purely dynamical models of Encke’s orbit – limited by chaos – may fail to reveal the comet’s origin, its meteor showers may provide the trail of breadcrumbs needed to backtrack our way out of the labyrinth.

Funder

National Aeronautics and Space Administration

Natural Sciences and Engineering Research Council of Canada

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3