O(3P) + CO2 scattering cross-sections at superthermal collision energies for planetary aeronomy

Author:

Gacesa Marko12ORCID,Lillis R J3,Zahnle K J2

Affiliation:

1. Bay Area Environmental Research Institute, Moffett Field, 94035 CA, USA

2. Space Science Division, NASA Ames Research Center, MS 245-3, Moffett Field, 94035 CA, USA

3. Space Sciences Laboratory, University of California, Berkeley, 94720 CA, USA

Abstract

ABSTRACT We report new elastic and inelastic cross-sections for O(3P) + CO2 scattering at collision energies from 0.03 to 5 eV, of major importance to O escape from Mars, Venus, and CO2-rich atmospheres. The cross-sections were calculated from first principles using three newly constructed ab initio potential energy surfaces correlating to the lowest energy asymptote of the complex. The surfaces were restricted to a planar geometry with the CO2 molecule assumed to be in linear configuration fixed at equilibrium. Quantum-mechanical coupled-channel formalism with a large basis set was used to compute state-to-state integral and differential cross-sections for elastic and inelastic O(3P) + CO2 scattering between all pairs of rotational states of CO2 molecule. The elastic cross-sections are 35 per cent lower at 0.5 eV and more than 50 per cent lower at 4 + eV than values commonly used in studies of processes in upper and middle planetary atmospheres of Mars, Earth, Venus, and CO2-rich planets. Momentum transfer cross-sections, of interest for energy transport, were found to be proportionally lower than predicted by mass scaling.

Funder

National Aeronautics and Space Administration

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3