Dynamics of baryon ejection in magnetar giant flares: implications for radio afterglows, r-process nucleosynthesis, and fast radio bursts

Author:

Cehula Jakub1ORCID,Thompson Todd A234ORCID,Metzger Brian D56

Affiliation:

1. Institute of Theoretical Physics, Faculty of Mathematics and Physics, Charles University , V Holešovičkách 2, Prague, CZ-180 00 , Czech Republic

2. Department of Astronomy, Ohio State University , 140 West 18th Avenue, Columbus, OH 43210 , USA

3. Center for Cosmology and Astro-Particle Physics, Ohio State University , 191 West Woodruff Ave., Columbus, OH 43210 , USA

4. Department of Physics, Ohio State University , 191 West Woodruff Ave., Columbus, OH 43210 , USA

5. Department of Physics and Columbia Astrophysics Laboratory, Columbia University , New York, NY 10027 , USA

6. Center for Computational Astrophysics, Flatiron Institute , 162 5th Ave., New York, NY 10010 , USA

Abstract

ABSTRACT We explore the impact of a magnetar giant flare (GF) on the neutron star (NS) crust, and the associated baryon mass ejection. We consider that sudden magnetic energy dissipation creates a thin high-pressure shell above a portion of the NS surface, which drives a relativistic shockwave into the crust, heating a fraction of these layers sufficiently to become unbound along directions unconfined by the magnetic field. We explore this process using spherically symmetric relativistic hydrodynamical simulations. For an initial shell pressure PGF we find the total unbound ejecta mass roughly obeys the relation $M_{\rm {ej}}\sim 4\!-\!9\times 10^{24}\, \rm {g}\, (P_{\rm GF}/10^{30}\, \rm {erg}\, \rm {cm}^{-3})^{1.43}$. For $P_{\rm {GF}}\sim 10^{30}\!-\!10^{31}\, \rm {erg}\, \rm {cm}^{-3}$ corresponding to the dissipation of a magnetic field of strength $\sim 10^{15.5}\!-\!10^{16}\, \rm {G}$, we find $M_{\rm {ej}}\sim 10^{25}\!-\!10^{26}\, \rm {g}$ with asymptotic velocities vej/c ∼ 0.3–0.6 compatible with the ejecta properties inferred from the afterglow of the 2004 December GF from SGR 1806-20. Because the flare excavates crustal material to a depth characterized by an electron fraction Ye ≈ 0.40–0.46, and is ejected with high entropy and rapid expansion time-scale, the conditions are met for heavy element r-process nucleosynthesis via the alpha-rich freeze-out mechanism. Given an energetic GF rate of roughly once per century in the Milky Way, we find that magnetar GFs could be an appreciable heavy r-process source that tracks star formation. We predict that GFs are accompanied by short ∼minutes long, luminous $\sim 10^{39}\, \rm {erg}\, \rm {s}^{-1}$ optical transients powered by r-process decay (nova brevis), akin to scaled-down kilonovae. Our findings also have implications for the synchrotron nebulae surrounding some repeating fast radio burst sources.

Funder

Horizon 2020

Charles University

NASA

National Science Foundation

Publisher

Oxford University Press (OUP)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3