MOBSTER – VII. Using light curves to infer magnetic and rotational properties of stars with centrifugal magnetospheres

Author:

Berry I D1,Shultz M E1,Owocki S P12,ud-Doula A3ORCID

Affiliation:

1. Department of Physics & Astronomy, University of Delaware , Newark, DE 19716, USA

2. Bartol Research Institute, University of Delaware , Newark, DE 19716, USA

3. Penn State Scranton , 120 Ridge View Dr, Dunmore, PA 18512, USA

Abstract

ABSTRACT Early-type B stars with strong magnetic fields and rapid rotation form centrifugal magnetospheres (CMs), as the relatively weak stellar wind becomes magnetically confined and centrifugally supported above the Kepler co-rotation radius. CM plasma is concentrated at and above the Kepler co-rotation radius at the intersection between the rotation and magnetic field axis. Stellar rotation can cause these clouds of material to intersect the viewer’s line of sight, leading to photometric eclipses. However, for stars with strong ($\sim 10\, {\rm kG}$) magnetic fields and rapid rotation, CMs can become optically thick enough for emission to occur via electron scattering. Using high-precision space photometry from a sample of stars with strong H α emission, we apply simulated light curves from the rigidly rotating magnetosphere model to directly infer magnetic and rotational properties of these stars. By comparing the values inferred from photometric modelling to those independently determined by spectropolarimetry, we find that magnetic obliquity angle β, viewer inclination i, and critical rotation fraction W can be approximately recovered for three of the four stars studied here. However, there are large discrepancies between the optical depth at the Kepler radius τK expected from magnetometry, and the values required to match the observations. We show that τK of order unity is needed to reasonably match the light-curve morphology of our sample stars.

Funder

University of Delaware

NASA

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3