Intrinsic tension in the supernova sector of the local Hubble constant measurement and its implications

Author:

Wojtak Radosław1ORCID,Hjorth Jens1

Affiliation:

1. DARK, Niels Bohr Institute, University of Copenhagen , Jagtvej 128, DK-2200 Copenhagen , Denmark

Abstract

ABSTRACT We reanalyse observations of Type Ia supernovae (SNe) and Cepheids used in the local determination of the Hubble constant and find strong evidence that SN standardization in the calibration sample (galaxies with observed Cepheids) requires a steeper slope of the colour correction than in the cosmological sample (galaxies in the Hubble flow). The colour correction in the calibration sample is consistent with being entirely due to an extinction correction due to dust with properties similar to those of the Milky Way (RB ≈ 4.6 ± 0.4) and there is no evidence for intrinsic scatter in the SN peak magnitudes. An immediate consequence of this finding is that the local measurement of the Hubble constant becomes dependent on the choice of SN reference colour, i.e. the colour of an unreddened SN. Specifically, the Hubble constant inferred from the same observations decreases gradually with the reference colour assumed in the SN standardization. We recover the Hubble constant measured by SH0ES for the standard choice of reference colour (SALT2 colour parameter c = 0), while for a reference colour that coincides with the blue end of the observed SN colour distribution (c ≈ −0.13), the Hubble constant from Planck observations of the cosmic microwave background (CMB) [assuming a flat Lambda cold dark matter (ΛCDM) cosmological model] is recovered. These results are intriguing in that they may provide an avenue for resolving the Hubble tension. However, since there is no obvious physical basis for the differences in colour corrections in the two SN samples, the origin of these requires further investigation.

Funder

Foundation for the Advancement of Medical Science

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3