Interesting clues to detect hidden tidal disruption events in active galactic nuclei

Author:

Zhang Xue-Guang1

Affiliation:

1. Guangxi Key Laboratory for Relativistic Astrophysics, School of Physical Science and Technology, GuangXi University , Nanning 530004 , P. R. China

Abstract

ABSTRACT In the manuscript, effects of tidal disruption events (TDEs) are estimated on long-term AGN variability, to provide interesting clues to detect probable hidden TDEs in normal broad line AGN with apparent intrinsic variability which overwhelm the TDEs expected variability features, after considering the unique TDEs expected variability patterns. Based on theoretical TDEs expected variability plus AGN intrinsic variability randomly simulated by Continuous AutoRegressive process, long-term variability properties with and without TDEs contributions are well analysed in AGN. Then, interesting effects of TDEs can be determined on long-term observed variability of AGN. First, more massive BHs, especially masses larger than $10^7\, {\rm M_\odot }$, can lead to more sensitive and positive dependence of τTN on RTN, with τTN as variability time-scale ratio of light curves with TDEs contributions to intrinsic light curves without TDEs contributions, and RTN as ratio of peak intensity of TDEs expected variability to the mean intensity of intrinsic AGN variability without TDEs contributions. Secondly, stronger TDEs contributions RTN can lead to τTN quite larger than 5. Thirdly, for intrinsic AGN variability having longer variability time-scales, TDEs contributions will lead τTN to be increased more slowly. The results actually provide an interesting forward-looking method to detect probable hidden TDEs in normal broad-line AGN, due to quite different variability properties, especially different DRW/CAR process expected variability time-scales, in different epochs, especially in normal broad line AGN with shorter intrinsic variability time-scales and with BH masses larger than $10^7\, {\rm M_\odot }$.

Funder

NSFC

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3