Testing the relativistic Doppler boost hypothesis for the binary candidate quasar PG1302-102 with multiband Swift data

Author:

Xin Chengcheng1,Charisi Maria2,Haiman Zoltán1,Schiminovich David1,Graham Matthew J2ORCID,Stern Daniel3,D’Orazio Daniel J4

Affiliation:

1. Department of Astronomy, Columbia University, New York, NY 10027, USA

2. Division of Physics, Mathematics and Astronomy, California Institute of Technology, Pasadena, CA 91125, USA

3. Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA

4. Department of Astronomy, Harvard University, Cambridge, MA 02138, USA

Abstract

ABSTRACT The bright quasar PG1302-102 has been identified as a candidate supermassive black hole binary from its near-sinusoidal optical variability. While the significance of its optical periodicity has been debated due to the stochastic variability of quasars, its multiwavelength variability in the ultraviolet (UV) and optical bands is consistent with relativistic Doppler boost caused by the orbital motion in a binary. However, this conclusion was based previously on sparse UV data that were not taken simultaneously with the optical data. Here, we report simultaneous follow-up observations of PG1302-102 with the Ultraviolet Optical Telescope on the Neil Gehrels Swift Observatory in six optical + UV bands. The additional nine Swift observations produce light curves roughly consistent with the trend under the Doppler boost hypothesis, which predicts that UV variability should track the optical, but with a ∼2.2 times higher amplitude. We perform a statistical analysis to quantitatively test this hypothesis. We find that the data are consistent with the Doppler boost hypothesis when we compare the the amplitudes in optical B-band and UV light curves. However, the ratio of UV to V-band variability is larger than expected and is consistent with the Doppler model, only if either the UV/optical spectral slopes vary, the stochastic variability makes a large contribution in the UV, or the sparse new optical data underestimate the true optical variability. We have evidence for the latter from comparison with the optical light curve from All-Sky Automated Survey for Supernovae. Additionally, the simultaneous analysis of all four bands strongly disfavours the Doppler boost model whenever Swift V band is involved. Additional, simultaneous optical + UV observations tracing out another cycle of the 5.2-yr proposed periodicity should lead to a definitive conclusion.

Funder

National Science Foundation

National Aeronautics and Space Administration

Jet Propulsion Laboratory

California Institute of Technology

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3