Searching for the next Galactic Luminous red nova

Author:

Addison Harry12ORCID,Blagorodnova Nadejda2ORCID,Groot Paul J234ORCID,Erasmus Nicolas3,Jones David56ORCID,Mogawana Orapeleng34ORCID

Affiliation:

1. Department of Physics, University of Surrey , Guildford GU2 7XH, United Kingdom

2. Department of Astrophysics/IMAPP, Radboud University , PO Box 9010, NL-6500 GL Nijmegen the Netherlands

3. South African Astronomical Observatory , PO Box 9, Observatory 7935, Cape Town, South Africa

4. University of Cape Town , Private Bag X3, Rondebosch 7701, Republic of South Africa

5. Instituto de Astrofísica de Canarias , E-38205 La Laguna, Tenerife, Spain

6. Departamento de Astrofísica, Universidad de La Laguna , E-38206 La Laguna, Tenerife, Spain

Abstract

ABSTRACT Luminous red novae (LRNe) are astrophysical transients believed to be caused by the partial ejection of a binary star’s common envelope (CE) and the merger of its components. The formation of the CE is likely to occur during unstable mass transfer, initiated by a primary star which is evolving off the main sequence (a Hertzsprung gap star) and a lower mass companion. In agreement with observations, theoretical studies have shown that outflows from the pre-CE phase produce a detectable brightening of the progenitor system a few years before the ejection event. Based on these assumptions, we present a method to identify Galactic LRNe precursors, the resulting precursor candidates, and our follow-up analysis to uncover their nature. We begin by constructing a sample of progenitor systems, i.e. Hertzsprung gap stars, by statistically modelling the density of a colour magnitude diagram formed from ‘well behaved’ Gaia DR2 sources. Their time-domain evolution from the Zwicky Transient Facility (ZTF) survey is used to search for slowly brightening events, as pre-CE precursor candidates. The nature of the resulting candidates is further investigated using archival data and our own spectroscopic follow-up. Overall, we constructed a sample of ∼5.4 × 104 progenitor sources, from which 21 were identified as candidate LRNe precursors. Further analysis revealed 16 of our candidates to be Hα emitters, with their spectra often suggesting hotter (albeit moderately extincted) A-type or B-type stars. Because of their long-term variability in optical and mid-infrared wavelengths, we propose that many of our candidates are mass-transferring binaries with compact companions surrounded by dusty circumstellar discs or alternatively magnetically active stellar merger remnants.

Funder

Netherlands Organisation for Scientific Research

European Union

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3