Radiatively-driven black hole winds revisited

Author:

Yamamoto R1,Fukue J1ORCID

Affiliation:

1. Astronomical Institute, Osaka Kyoiku University, Asahigaoka, Kashiwara, Osaka 582-8582, Japan

Abstract

ABSTRACT We examine general relativistic radiatively-driven spherical winds, using the basic equations for relativistic radiation hydrodynamics under the moment formalism. Moment equations are often closed, using the equilibrium diffusion approximation, which has an acausal problem, and furthermore, gives nodal-type critical points. Instead, we use the non-equilibrium diffusion approximation with a closure relation of a variable Eddington factor, f(τ, β), where τ is the optical depth and β is the flow speed normalized by the speed of light. We then analyse the critical properties in detail for several parameters, and found that there appear saddle-type critical points as well as nodal type and spiral one. The most suitable type is the saddle one appears in a region close to a black hole. We also calculate transonic solutions with typical parameters, and show that the luminosity is almost comparable to the Eddington luminosity, the gas is quickly accelerated in the vicinity of the black hole, and wind terminal speeds are on the order of 0.1–0.3 c. These results of radiatively-driven black hole winds can be applied e.g. to ultra-fast outflows, which are supposed to be fast outflows from the vicinity of supermassive black holes.

Funder

Ministry of Education, Culture, Sports, Science and Technology

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The spin of a stellar black hole 4U 1543−47 determined by Insight-HXMT;Monthly Notices of the Royal Astronomical Society;2023-10-12

2. Radiatively driven, time dependent bipolar outflows;Monthly Notices of the Royal Astronomical Society;2021-10-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3