The ACCELERATION programme: I. Cosmology with the redshift drift

Author:

Cooke Ryan1ORCID

Affiliation:

1. Centre for Extragalactic Astronomy, Department of Physics, Durham University, South Road, Durham DH1 3LE, UK

Abstract

ABSTRACT Detecting the change of a cosmological object’s redshift due to the time evolution of the Universal expansion rate is an ambitious experiment that will be attempted with future telescope facilities. In this paper, we describe the ACCELERATION programme, which aims to study the properties of the most underdense regions of the Universe. One of the highlight goals of this programme is to prepare for the redshift drift measurement. Using the EAGLE cosmological hydrodynamic simulations, we estimate the peculiar acceleration of gas in galaxies and the Lyα forest. We find that star-forming ‘cold neutral gas’ exhibits large peculiar acceleration due to the high local density of baryons near star-forming regions. We conclude that absorption by cold neutral gas is unlikely to yield a detection of the cosmological redshift drift. On the other hand, we find that the peculiar accelerations of Lyα forest absorbers are more than an order of magnitude below the expected cosmological signal. We also highlight that the numerous low H i column density systems display lower peculiar acceleration. Finally, we propose a new ‘Lyα cell’ technique that applies a small correction to the wavelength calibration to secure a relative measurement of the cosmic drift between two unrelated cosmological sources at different redshifts. For suitable combinations of absorption lines, the cosmological signal can be more than doubled, while the affect of the observer peculiar acceleration is mitigated. Using current data of four suitable Lyα cells, we infer a limit on the cosmological redshift drift to be $\dot{v}_{\rm obs}\lt 65~{\rm m~s}^{-1}~{\rm yr}^{-1}$ (2σ).

Funder

STFC

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Toward a Direct Measurement of the Cosmic Acceleration: The Pilot Observation of HI 21 cm Absorption Line at FAST;Research in Astronomy and Astrophysics;2024-06-19

2. Probing the small-scale structure of the intergalactic medium with ESPRESSO: spectroscopy of the lensed QSO UM673;Monthly Notices of the Royal Astronomical Society;2024-02-12

3. Cosmology and fundamental physics with the ELT-ANDES spectrograph;Experimental Astronomy;2024-02

4. Watching the Universe’s acceleration era with the SKAO;Monthly Notices of the Royal Astronomical Society;2023-12-18

5. Perturbations of cosmological redshift drift;Journal of Cosmology and Astroparticle Physics;2023-11-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3