The effects of varying colour–luminosity relations on Type Ia supernova science

Author:

González-Gaitán S1ORCID,de Jaeger T23,Galbany L45ORCID,Mourão A1,Paulino-Afonso A1ORCID,Filippenko A V35

Affiliation:

1. CENTRA, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, P-1049-001 Lisboa, Portugal

2. Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822, USA

3. Department of Astronomy, University of California, Berkeley, CA 94720-3411, USA

4. Institute of Space Sciences (ICE, CSIC), Campus UAB, Carrer de Can Magrans, s/n, E-08193 Barcelona, Spain

5. Miller Institute for Basic Research in Science, University of California, Berkeley, CA 94720, USA

Abstract

ABSTRACT The success of Type Ia supernova (SN Ia) distance standardization for cosmology relies on a single global linear relationship between their peak luminosity and colour, the β parameter. However, there are several pieces of evidence and physical reasons to believe that this relation is not universal and may change within different subgroups, or even among individual objects. In this work, we allow β to vary among subpopulations with different observed properties in the cosmological fits. Although the inferred cosmological parameters are consistent with previous studies that assume a single colour–luminosity relation, we find that the SN data favour non-universal distributions of β when split according to SN colour and/or host-galaxy mass. For galaxy mass, we obtain a β-step relation in which low β values occur in more massive galaxies, a trend that can be explained by differing dust reddening laws for two types of environments. For colour, we find that bluer/redder SNe Ia are consistent with a lower/larger β. This trend is explained with β being a combination of a low intrinsic colour–luminosity relation dominant in bluer SNe and a higher extrinsic reddening relation dominant at redder colours. The host-galaxy mass-step correction always provides better distance calibration, regardless of the multiple β approaches, and we suggest that it may come from a difference in intrinsic colour–luminosity properties of SNe Ia in two types of environments. Additionally, we find that blue SNe in low-mass environments are better standard candles than the others.

Funder

FCT

Miller Institute for Basic Research in Science

AVF

NASA

Space Telescope Science Institute

Spanish Ministry of Science and Innovation

MICIU

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3