On the hosts of neutron star mergers in the nearby Universe

Author:

Cavallo L1ORCID,Greggio L2

Affiliation:

1. Physics and Astronomy Department Galileo Galilei, University of Padova , Vicolo dell’Osservatorio 3, I-5122, Padova, Italy

2. INAF – Osservatorio Astronomico di Padova , Vicolo dell’Osservatorio 5, Padova, I-35122, Italy

Abstract

ABSTRACT Recently, the characterization of binary systems of neutron stars has become central in various fields such as gravitational waves, gamma-ray bursts (GRBs), and the chemical evolution of galaxies. In this work, we explore possible observational proxies that can be used to infer some characteristics of the delay time distribution (DTD) of neutron star mergers (NSMs). We construct a sample of model galaxies that fulfils the observed galaxy stellar mass function, star formation rate versus mass relation, and the cosmic star formation rate density. The star formation history of galaxies is described with a log-normal function characterized by two parameters: the position of the maximum and the width of the distribution. We assume a theoretical DTD that mainly depends on the lower limit and the slope of the distribution of the separations of the binary neutron star systems at birth. We find that the current rate of NSMs ($\mathcal {R}=320^{+490}_{-240}$ Gpc−3 yr−1) requires that ∼0.3 per cent of neutron star progenitors lives in binary systems with the right characteristics to lead to an NSM within a Hubble time. We explore the expected relations between the rate of NSMs and the properties of the host galaxy. We find that the most effective proxy for the shape of the DTD of NSMs is the current star formation activity of the typical host. At present, the fraction of short-GRBs observed in star-forming galaxies favours DTDs with at least ${\sim}40~{{\ \rm per\ cent}}$ of mergers within 100 Myr. This conclusion will be put on a stronger basis with larger samples of short-GRBs with host association (e.g. 600 events at z ≤ 1).

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3