Affiliation:
1. Indian Institute of Technology Guwahati , Guwahati 781039, Assam, India
2. Discipline of Astronomy, Astrophysics and Space Engineering, Indian Institute of Technology Indore , Indore 453552, India
Abstract
ABSTRACT
We present a novel approach to study the global structure of steady, axisymmetric, advective, magnetohydrodynamic (MHD) accretion flow around black holes in full general relativity (GR). Considering ideal MHD conditions and relativistic equation of state (REoS), we solve the governing equations to obtain all possible smooth global accretion solutions. We examine the dynamical and thermodynamical properties of accreting matter in terms of the flow parameters, namely energy (${\cal E}$), angular momentum (${\cal L}$), and local magnetic fields. For a vertically integrated GRMHD flow, we observe that toroidal component (bϕ) of the magnetic fields generally dominates over radial component (br) at the disc equatorial plane. This evidently suggests that toroidal magnetic field indeed plays important role in regulating the disc dynamics. We further notice that the disc remains mostly gas pressure (pgas) dominated (β = pgas/pmag > 1, pmag refers magnetic pressure) except at the near horizon region, where magnetic fields become indispensable (β ∼ 1). We observe that Maxwell stress is developed that eventually yields angular momentum transport inside the disc. Towards this, we calculate the viscosity parameter (α) that appears to be radially varying. In addition, we examine the underlying scaling relation between α and β, which clearly distinguishes two domains coexisted along the radial extent of the disc. Finally, we discuss the utility of the present formalism in the realm of GRMHD simulation studies.
Funder
Science and Engineering Research Board
Publisher
Oxford University Press (OUP)
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献