Discovering strongly lensed QSOs from unresolved light curves

Author:

Shu Yiping1,Belokurov Vasily1ORCID,Evans N Wyn1

Affiliation:

1. Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA, UK

Abstract

ABSTRACT We present a new method of discovering galaxy-scale, strongly lensed QSO systems from unresolved light curves using the autocorrelation function. The method is tested on five rungs of simulated light curves from the Time Delay Challenge 1 that were designed to match the light-curve qualities from existing, ongoing, and forthcoming time-domain surveys such as the Medium Deep Survey of the Panoramic Survey Telescope And Rapid Response System 1, the Zwicky Transient Facility, and the Rubin Observatory Legacy Survey of Space and Time. Among simulated lens systems for which time delays can be successfully measured by current best algorithms, our method achieves an overall true-positive rate of 28–58 per cent for doubly imaged QSOs (doubles) and 36–60 per cent for quadruply imaged QSOs (quads) while maintains ≲10 per cent false-positive rates. We also apply the method to observed light curves of 22 known strongly lensed QSOs, and recover 20 per cent of doubles and 25 per cent of quads. The tests demonstrate the capability of our method for discovering strongly lensed QSOs from major time domain surveys. The performance of our method can be further improved by analysing multifilter light curves and supplementing with morphological, colour, and/or astrometric constraints. More importantly, our method is particularly useful for discovering small-separation strongly lensed QSOs, complementary to traditional imaging-based methods.

Funder

Alexander von Humboldt-Stiftung

Bundesministerium für Bildung und Forschung

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3