FLORAH: a generative model for halo assembly histories

Author:

Nguyen Tri123ORCID,Modi Chirag34ORCID,Yung L Y Aaron5ORCID,Somerville Rachel S3

Affiliation:

1. Kavli Institute for Astrophysics and Space Research and Department of Physics, Massachusetts Institute of Technology , 77 Massachusetts Ave, Cambridge, MA 02139 , USA

2. The NSF AI Institute for Artificial Intelligence and Fundamental Interactions , Cambridge, MA 02139 , USA

3. Center for Computational Astrophysics, Flatiron Institute , 162 5th Avenue, New York, NY 10010 , USA

4. Center for Computational Mathematics, Flatiron Institute , 162 5th Avenue, New York, NY 10010 , USA

5. Astrophysics Science Division , NASA Goddard Space Flight Center, 8800 Greenbelt Rd, Greenbelt, MD 20771 , USA

Abstract

ABSTRACT The mass assembly history (MAH) of dark matter haloes plays a crucial role in shaping the formation and evolution of galaxies. MAHs are used extensively in semi-analytic and empirical models of galaxy formation, yet current analytic methods to generate them are inaccurate and unable to capture their relationship with the halo internal structure and large-scale environment. This paper introduces florah (FLOw-based Recurrent model for Assembly Histories), a machine-learning framework for generating assembly histories of ensembles of dark matter haloes. We train florah on the assembly histories from the Gadget at Ultra-high Redshift with Extra Fine Time-steps and vsmdplN-body simulations and demonstrate its ability to recover key properties such as the time evolution of mass and concentration. We obtain similar results for the galaxy stellar mass versus halo mass relation and its residuals when we run the Santa Cruz semi-analytic model on florah-generated assembly histories and halo formation histories extracted from an N-body simulation. We further show that florah also reproduces the dependence of clustering on properties other than mass (assembly bias), which is not captured by other analytic methods. By combining multiple networks trained on a suite of simulations with different redshift ranges and mass resolutions, we are able to construct accurate main progenitor branches with a wide dynamic mass range from $z=0$ up to an ultra-high redshift $z \approx 20$, currently far beyond that of a single N-body simulation. florah is the first step towards a machine learning-based framework for planting full merger trees; this will enable the exploration of different galaxy formation scenarios with great computational efficiency at unprecedented accuracy.

Funder

Simons Foundation

National Science Foundation

NASA Postdoctoral Program

NPP

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3