Modal noise mitigation for high-precision spectroscopy using a photonic reformatter

Author:

Pike F A1ORCID,Benoît A1ORCID,MacLachlan D G1,Harris R J2ORCID,Gris-Sánchez I3ORCID,Lee D4,Birks T A3,Thomson R R1

Affiliation:

1. SUPA, Institute of Photonics and Quantum Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK

2. Zentrum für Astronomie der Universität Heidelberg, Landessternwarte, Königstuhl 12, D-69117 Heidelberg, Germany

3. Centre for Photonics and Photonic Materials, Department of Physics, University of Bath, Bath BA2 7AY, UK

4. STFC UK Astronomy Technology Centre, Royal Observatory, Blackford Hill, Edinburgh EH9 3HJ, UK

Abstract

ABSTRACT Recently, we demonstrated how an astrophotonic light reformatting device, based on a multicore fibre photonic lantern and a 3D waveguide component, can be used to efficiently reformat the point spread function of a telescope to a diffraction-limited pseudo-slit. Here, we demonstrate how such a device can also efficiently mitigate modal noise – a potential source of instability in high-resolution multimode fibre-fed spectrographs. To investigate the modal noise performance of the photonic reformatter, we have used it to feed light into a bench-top near-infrared spectrograph (R ≈ 7000, λ ≈ 1550 nm). One approach to quantifying the modal noise involved the use of broad-band excitation light and a statistical analysis of how the overall measured spectrum was affected by variations in the input coupling conditions. This approach indicated that the photonic reformatter could reduce modal noise by a factor of 6 when compared to a multimode fibre with a similar number of guided modes. Another approach to quantifying the modal noise involved the use of multiple spectrally narrow lines, and an analysis of how the measured barycentres of these lines were affected by variations in the input coupling. Using this approach, the photonic reformatter was observed to suppress modal noise to the level necessary to obtain spectra with stability close to that observed when using a single mode fibre feed. These results demonstrate the potential of using photonic reformatters to enable efficient multimode spectrographs that operate at the diffraction-limit and are free of modal noise, with potential applications including radial velocity measurements of M-dwarfs.

Funder

Science and Technology Facilities Council

Horizon 2020

Renishaw

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3