Thermalization of large energy release in the early Universe

Author:

Chluba Jens1ORCID,Ravenni Andrea1,Acharya Sandeep Kumar12

Affiliation:

1. Jodrell Bank Centre for Astrophysics, School of Physics and Astronomy, The University of Manchester, Manchester M13 9PL, U.K

2. Department of Theoretical Physics, Tata Institute of Fundamental Research, Mumbai 400005, India

Abstract

ABSTRACT Spectral distortions of the cosmic microwave background (CMB) provide a unique tool for learning about the early phases of cosmic history, reaching deep into the primordial Universe. At redshifts z ≲ 106, thermalization processes become inefficient and existing limits from COBE/FIRAS imply that no more than Δρ/ρ ≲ 6 × 10−5 ($95{{\ \rm per\ cent}}$ c.l.) of energy could have been injected into the CMB. However, at higher redshifts, when thermalization is efficient, the constraint weakens and Δρ/ρ ≃ 0.01−0.1 could in principle have occurred. Existing computations for the evolution of distortions commonly assume Δρ/ρ ≪ 1 and thus become inaccurate in this case. Similarly, relativistic temperature corrections become relevant for large energy release, but have previously not been modelled as carefully. Here, we study the evolution of distortions and the thermalization process after single large energy release at z ≳ 105. We show that for large distortions the thermalization efficiency is significantly reduced and that the distortion visibility is sizeable to much earlier times. This tightens spectral distortions constraints on low-mass primordial black holes with masses $M_{\rm PBH}\lesssim 2 \times 10^{11}\, {\rm g}$. Similarly, distortion limits on the amplitude of the small-scale curvature power spectrum at wavenumbers $k\gtrsim 10^4\, {\rm Mpc}^{-1}$ and short-lived decaying particles with lifetimes $t_X\lesssim 10^7\, {\rm s}$ are tightened, however, these still require a more detailed time-dependent treatment. We also briefly discuss the constraints from measurements of the effective number of relativistic degrees of freedom and light element abundances and how these complement spectral distortion limits.

Funder

H2020 European Research Council

Royal Society

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3