Synchrotron self-Compton radiation from magnetically dominated turbulent plasmas in relativistic jets

Author:

Sobacchi Emanuele1,Sironi Lorenzo1,Beloborodov Andrei M23

Affiliation:

1. Department of Astronomy and Columbia Astrophysics Laboratory, Columbia University, 550 West 120th Street, New York, NY 10027, USA

2. Physics Department and Columbia Astrophysics Laboratory, Columbia University, 538 West 120th Street, New York, NY 10027, USA

3. Max Planck Institute for Astrophysics, Karl-Schwarzschild-Str 1, D-85741 Garching, Germany

Abstract

ABSTRACT Relativistic jets launched by rotating black holes are powerful emitters of non-thermal radiation. Extraction of the rotational energy via electromagnetic stresses produces magnetically dominated jets, which may become turbulent. Studies of magnetically dominated plasma turbulence from first principles show that most of the accelerated particles have small pitch angles, i.e. the particle velocity is nearly aligned with the local magnetic field. We examine synchrotron self-Compton radiation from anisotropic particles in the fast cooling regime. The small pitch angles reduce the synchrotron cooling rate and promote the role of inverse Compton (IC) cooling, which can occur in two different regimes. In the Thomson regime, both synchrotron and IC components have soft spectra, νFν ∝ ν1/2. In the Klein–Nishina regime, synchrotron radiation has a hard spectrum, typically νFν ∝ ν, over a broad range of frequencies. Our results have implications for the modelling of BL Lacertae objects (BL Lacs) and gamma-ray bursts (GRBs). BL Lacs produce soft synchrotron and IC spectra, as expected when Klein–Nishina effects are minor. The observed synchrotron and IC luminosities are typically comparable, which indicates a moderate anisotropy with pitch angles θ ≳ 0.1. Rare orphan gamma-ray flares may be produced when θ ≪ 0.1. The hard spectra of GRBs may be consistent with synchrotron radiation when the emitting particles are IC cooling in the Klein–Nishina regime, as expected for pitch angles θ ∼ 0.1. Blazar and GRB spectra can be explained by turbulent jets with a similar electron plasma magnetization parameter, σe ∼ 104, which for electron–proton plasmas corresponds to an overall magnetization σ = (me/mp)σe ∼ 10.

Funder

DOE

NASA

NSF

Simons Foundation

Humboldt Foundation

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3