Intrinsic alignment from multiple shear estimates: a first application to data and forecasts for stage IV

Author:

MacMahon-Gellér Charlie1ORCID,Leonard C Danielle1

Affiliation:

1. School of Mathematics, Statistics and Physics , Herschel Building, Newcastle University, Newcastle-upon-Tyne NE1 7RU , UK

Abstract

ABSTRACT Without mitigation, the intrinsic alignment (IA) of galaxies poses a significant threat to achieving unbiased cosmological parameter constraints from precision weak lensing surveys. Here, we apply for the first time to data a method to extract the scale dependence of the IA contribution to galaxy–galaxy lensing, which takes advantage of the difference in alignment signal as measured by shear estimators with different sensitivities to galactic radii. Using data from Year 1 of the Dark Energy Survey, with shear estimators METACALIBRATION and IM3SHAPE, we investigate and address method systematics including non-trivial selection functions, differences in weighting between estimators, and multiplicative bias. We obtain a null detection of IA, which appears qualitatively consistent with existing work. We then forecast the application of this method to Rubin Observatory Legacy Survey of Space and Time (LSST) data and place requirements on a pair of shear estimators for detecting IA and constraining its 1-halo scale dependence. We find that for LSST Year 1, shear estimators should have at least a 40 per cent difference in IA amplitude, and the Pearson correlation coefficient of their shape noise should be at least ρ = 0.50, to ensure a 1σ detection of IA and a constraint on its 1-halo scale dependence with a signal-to-noise ratio greater than 1. For Year 10, a 1σ detection and constraint become possible for 20 per cent differences in alignment amplitude and ρ = 0.50.

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3