UV bright red-sequence galaxies: how do UV upturn systems evolve in redshift and stellar mass?

Author:

Dantas M L L12ORCID,Coelho P R T1ORCID,de Souza R S3,Gonçalves T S4

Affiliation:

1. Instituto de Astronomia, Geofísica e Ciências Atmosféricas, Universidade de São Paulo, R. do Matão 1226, 05508-090, São Paulo, Brazil

2. Departamento de Física Teórica, Universidad Autónoma de Madrid, E-28049, Madrid, Spain

3. Department of Physics & Astronomy, University of North Carolina at Chapel Hill, NC 27599, USA

4. Observatório do Valongo, Universidade Federal of Rio de Janeiro, Ladeira Pedro Antônio 43, Rio de Janeiro, RJ 20080-090, Brazil

Abstract

ABSTRACT The so-called ultraviolet (UV) upturn of elliptical galaxies is a phenomenon characterized by the up-rise of their fluxes in bluer wavelengths, typically in the 1200–2500 Å range. This work aims at estimating the rate of occurrence of the UV upturn over the entire red-sequence population of galaxies that show significant UV emission. This assessment is made considering it as function of three parameters: redshift, stellar mass, and – what may seem counter-intuitive at first – emission-line classification. We built a multiwavelength spectrophotometric catalogue from the Galaxy Mass Assembly survey, together with aperture-matched data from Galaxy Evolution Explorer Medium-Depth Imaging Survey (MIS) and Sloan Digital Sky Survey, covering the redshift range between 0.06 and 0.40. From this sample, we analyse the UV emission among UV bright galaxies, by selecting those that occupy the red-sequence locus in the (NUV− r) × (FUV−NUV) chart; then, we stratify the sample by their emission-line classes. To that end, we make use of emission-line diagnostic diagrams, focusing the analysis in retired/passive lineless galaxies. Then, a Bayesian logistic model was built to simultaneously deal with the effects of all galaxy properties (including emission-line classification or lack thereof). The main results show that retired/passive systems host an up-rise in the fraction of UV upturn for redshifts between 0.06 and 0.25, followed by an in-fall up to 0.35. Additionally, we show that the fraction of UV upturn hosts rises with increasing stellar mass.

Funder

NASA

U.S. Department of Energy

UNC

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3