Evolution of the hard X-ray photon index in black-hole X-ray binaries: hints for accretion physics

Author:

Liu Hao1,Dong AiJun2,Weng ShanShan3ORCID,Wu Qingwen1ORCID

Affiliation:

1. School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China

2. Guizhou Provincial Key Laboratory of Radio Astronomy and Data Processing, Guizhou Normal University, Guiyang 550001, China

3. Department of Physics and Institute of Theoretical Physics, Nanjing Normal University, Nanjing 210023, China

Abstract

ABSTRACT Negative and positive correlations between the X-ray photon index and the Eddington-scaled X-ray luminosity were found in the decay phase of X-ray binary outbursts and a sample of active galactic nuclei in former works. We systematically investigate the evolution of the X-ray spectral index, along with the X-ray flux and Eddington ratio, in eight outbursts of four black-hole X-ray binaries, where all selected outbursts have observational data from the Rossi X-ray Timing Explorer in both rise and decay phases. In the initial rise phase, the X-ray spectral index is anticorrelated with the flux and the X-ray spectrum quickly softens when the X-ray flux is approaching the peak value. In the decay phase, the X-ray photon index and the flux follow two different positive correlations and they become anticorrelated again when the X-ray flux is below a critical value, where the anticorrelation part follows the same trend as found in the initial rise phase. Compared with other X-ray binaries, GRO J1655−40 has an evident lower critical Eddington ratio for the anticorrelation and positive transition, which suggests that its black-hole mass and distance are not well constrained, or its intrinsic physics is different.

Funder

National Natural Science Foundation of China

Guizhou Normal University

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3